Kategoriler
Genel Kültür

Rüzgar Enerjisi Nedir? Rüzgar Gücü İle Nasıl Elektrik Elde Edilir?

Başlangıç maliyeti yüksek olup sonra neredeyse hiçbir uğraşa neden olmayacak bir yatırım aracı olarak rüzgar enerjisini kullanma yöntemi en akıllıca yöntemdir. Yenilenebilir enerji kaynaklarının başında gelen rügar enerjisinin yurdumuzda büyük bir potansiyeli bulunuyor. Bu nedenle şu günlerde rüzgar enerjisine büyük bir yatırım yapılıyor. Böylece 2023 yılına kadar 20 bin megavat rüzgar enerjisi üretmek için 30 milyar doları rüzgar türbinlerine yatıracak Türkiye, bunun en azından 7.5 milyar dolarını kendi imkanlarıyla sağlamayı planlıyor. Kalanının ise yabancı markalarca karşılanacağı düşünülüyor. Peki bu enerji kaynağı nasıl elde edilir? Uzmanportal.com olarak sizler için araştırdık.

İnsanlar yelkenlileri hareket ettirmek ve gemileri yürütmek için en az 5500 yıldan beri rüzgârın gücünden faydalanıyor. Yeldeğirmenleri, sulama işlemi ve tahıl ezmek için 7. yüzyıldan beri Afganistan, İran ve Pakistan’da kullanılıyor.

1887 Haziran ayında İskoç Akademisyen Profesör James Blyth rüzgâr gücü deneylerine başladı ve 1891’de İngiltere’de patent aldı. 1887-88’de Amerika Birleşik Devletleri’nde, Charles Francis Brush rüzgâr güç makinesi kullanarak elektrik üretti. 1900 yılına kadar evinde ve laboratuvarının elektriğini sağladı. 1890’larda Danimarkalı bilim adamı ve mucit Poul la Cour elektrik üretmek için rüzgâr türbinlerini inşa etti. Bu, daha sonra hidrojen üretmek için kullanıldı. Bunlar bugüne gelinceye kadar rüzgârdan nasıl faydalanıldığını gösteriyor.

Modern rüzgâr güç endüstrisi 1979’da, Danimarkalı Kuriant, Vestas, Nordtank ve Bonus şirketlerinin rüzgâr türbinlerini seri üretmesiyle başladı. Bunlar bugünkü standartlardan küçüktü ve her biri 20-30 kW’lıktı. Ondan sonra kapasitelerini 7 MW’a çıkarttılar ve birçok ülkeye yayıldılar.

Rüzgâr gücü, elektrik üretmek için rüzgâr türbinleri, mekaniksel güç için Yel değirmeni, su veya kuyu pompalama için rüzgâr pompaları veya gemileri yürütmek için yelkenler kullanarak rüzgârın kullanışlı formundaki rüzgâr enerjisinin sonucudur.

2009’un sonunda dünya çapındaki rüzgâr güç generatörlerinin kapasitesi 159,2 GW (GigaWatt) idi. Enerji üretimi ise 340 TW (TeraWatt) idi. Bu da dünyada kullanılan elektriğin %2’si anlamına geliyor. Enerji üretimi, 2007, 2008 ve 2009 yıllarında ikişer kat olmak üzere hızlı bir şekilde artıyor. 2008’de Statik (veya durağan) elektrik üretimi Danimarka’da %19, İspanya ve Portekiz’de %13, Almanya ve İrlanda’da %7 olmak üzere bazı ülkelerde (hükümetin desteğiyle) rüzgâr gücü gözle görülür şekilde, hızla artıyor. Türkiye’de çalışmalar yeni yeni başladı. Mayıs 2009 itibariyle 80 ülkede ticari olarak rüzgâr gücü kullanılıyor.

Büyük boyutlu rüzgâr tarlaları, elektrik iletim sistemine bağlanır. Daha küçük tesisler, üretilen elektriği sistemden ayrılan yerlerde kullanır. Bazı şirketler, küçük tesislerde üretilen fazla elektriği satın alıyor. Güç kaynağı olarak rüzgâr enerjisi fosil yakıtlara bir alternatiftir. Çünkü, bol, yenilenebilir, alıcı kitlesi geniş, temiz ve işlem esnasında sera gazı etkisine neden olmamaktadır. Bununla birlikte görüntü kirliliğine ve çevreye verdiği etkilerden dolayı rüzgâr tarlalarını inşa etmek genelde hoş karşılanmıyor.

Ekonomik olarak sadece rüzgâr olduğunda kullanılabiliyor olmasından dolayı rüzgâr gücü düzensizdir. Hidrolik güç ve standart yük işletme teknikleri gibi diğer kaynaklar ihtiyaca göre kullanılır. Rüzgârın seyrek aralıklarla esmesi, toplam talepten daha az kaynak sağlandığında bazı problemleri beraberinde getirir. Fakat maliyeti oranı daha azdır.

Bir rüzgâr tarlasındaki türbinler orta gerilimle güç toplama sistemi ve iletişim ağına bağlıdır (daha çok 34,5 kV). Alt istasyondaki, bu orta gerilim elektriksel akımı yüksek gerilim elektrik iletim hattı sistemine bağlanması için bir transformatör yardımı ile arttırılır.

Şebeke yönetimi
Rüzgâr gücü için sıklıkla kullanılan indiksiyon generatörler, ikazlama için reaktif güce ihtiyaç duyarlar. Bu yüzden, güç faktörü düzeltme için sağlam kondansatör bankalarını içeren rüzgâr güç düzeltme sistemlerinde şalt sahasına ihtiyaç vardır. Rüzgâr türbin generatörlerinin farklı türleri, şebekeye iletim esnasında farklı davranır. Bu yüzden, yeni bir rüzgâr tarlasının dinamik elektromekanik karakteristiğinin kapsamlı modellemesi, iletim sistemi oparatörlerinin, oluşabilecek sistem hatalarını tamir edebilmesi ve dengeli davranış göstermesi sağlaması için, gereklidir. Özellikle indiksiyon generatörler, buhar ve hidrolik türbin senkron generatörlerin aksine, hata esnasında sistem gerilimini desteklemezler. Çift beslemeli elektrik makineleri –rüzgâr türbinleri ve türbin generatörü ile toplayıcı sistem arasındaki katı hal dönüştürücüleri- şebeke bağlantısı için daha çok tercih edilen özelliklere sahiptir. İletim sistemi operatörleri, sisteme bağlantıyı sağlayan gereçleri belirlemek için şebeke koduna sahip bir rüzgâr tarla geliştiricisi ile bağlantı kurmalıdır. Bu gereçler, güç faktörü, sabit frekans ve sistem hataları esnasındaki rüzgâr türbinlerinin dinamik davranışlarını içerir.

Kapasite faktörü
Rüzgâr hızının sabit olmadığından dolayı, rüzgâr tarlasının yıllık enerji üretimi, generatör üzerindeki etikete yazılan saatlik değerlerin bir yıldaki toplam saatle çarpılması sonucu çıkan değer ile hiçbir zaman aynı olmaz. Bir yıldaki gerçek üretim değeri teorik olarak maksimum değer olan kapasite faktörü olarak adlandırılır. Tipik olarak kapasite faktörü %20 ile 40 arasındadır. Örneğin, kapasite faktörü %35 olan 1 MW’lık bir türbin, yılda 8760 MWh (1*24*365) üretmez. Sadece 1*0,35*24*365= 3066 MWh üretir.

Yakıt santrallerinin aksine kapasite faktörü rüzgârın doğal özelliğiyle sınırlıdır. Diğer tür güç santrallerin kapasite faktörü, daha çok yakıt maliyetine dayalıdır. Küçük bir miktarı bakım masraflarını oluşturur. Nükleer santrallerin yakıt maliyeti düşüktür ve bu yüzden %90 gibi bir verim ile çalışır. Yüksek yakıt maliyetine sahip santraller geri dönüşüme döndürüldü. Yakıt olarak doğal gaz kullanan gaz türbini işletim için çok pahalıdır ve sadece enerji ihtiyacının en yoğun olduğu zaman çalıştırılır. Bir gaz türbin santralinin yıllık kapasite faktörü, yüksek enerji üretim maliyetinden dolayı %5 ile 25 arasındadır.

Etki
Rüzgâr enerji “etki”si, rüzgâr tarafından üretilen enerjinin, generatörün kullanılabilir toplam kapasitesi ile karşılaştırılmasıdır. Genellikle rüzgâr etkisinin “maksimum” seviyede olduğu kabul edilir. Belirli şebekedeki sınır var olan üretim santrallerine, mekanizmaların fiyatına, arz-talep yönetimine için verime ve diğer faktörlere bağlıdır. Bağlı bir elektrik şebekesi, donanım başarısızlıkları için zaten ters besleme ve iletim verimini içerir. Bu ters verim, rüzgâr santrallerinde üretilen gücü düzene koymaya da yardımcı olabilir. Çalışmalar tüketilen toplam elektrik enerjisinin %20’sinin en az zorlukla birleştirilebileceğini gösterdi. Bu çalışmalar çoğrafik olarak çeşitli yerlerdeki rüzgâr tarlalarında, kullanılabilir enerjinin bir kısmında, arz-talep yönetiminde, büyük şebeke alanlarında yapıldı. Bunlardan başka birkaç tekniksel sınırlama da vardır. Fakat ekonomik dengesizlikler daha da önem arzediyor.

Şu anda, birkaç şebeke sistemindeki rüzgâr enerjisinin etkisi %5’in üzerindedir: Danimarka (%19’un üzerinde), İspanya ve Portekiz (%11’in üzerinde), Almanya ve İrlanda Cumhuriyeti %6’nın üzerinde). Örneğin, 8 Kasım 2009’un sabah saatlerinde, İspanya’daki elektrik arzında, ülkenin elektriğinin yarıdan fazlası rüzgâr enerjisinden sağlandı. Bu durum şebekede hiçbir sorun teşkil etmedi.

Danimarka şebekesi, Avrupa şebekesiyle büyük oranda bağlantılıdır. Rüzgâr gücünün yarıdan fazlasını Norveç’e göndererek şebeke yönetimi problemlerini çözmüş oldu. Elektrik gönderimi ve rüzgâr gücü arasındaki ilişki çok sıkıdır.

Kesintiler ve etki sınırları
Rüzgâr gücünden üretilen elektrik, birkaç farklı zaman aralığında, saatlik, günlük ve mevsimlik olarak yüksek oranda değişebilir. Yıllık değişim de vardır. Değişim rüzgâr santral çıkışının predictability nin saatlik veya günlük kısaltmasıyla ifade edilir. Diğer elektrik kaynakları gibi rüzgâr enerjisi “tarife”lendirilmelidir. Rüzgâr gücünde tahmini yöntemler kullanılır. Fakat rüzgâr santral çıkışının predictability kısaltma işleminde düşük kalır.

Çünkü ani elektrik üretim ve tüketimi, şebeke kararlılığını koruması için dengede kalmalıdır. Bu değişim dayanıklılığı, sağlanabilir şebekedeki rüzgâr gücünün büyük oranlardaki değişimlerine karşı koyabilir.

Kategoriler
Genel Kültür GÜNCEL

Kısaca Enerji Nedir, Enerji Çeşitleri Nelerdir? Enerji Çeşitleri Nasıl Elde Edilir?

Hepimizin, dünyadaki her canlının yaşamı enerjiye bağlıdır. Enerji olmadan yaşayamayız, hadi yaşadığımızı farzedelim, yaşasak bile kesinlikle hiçbir işimizi de yapamayız. Herşey ama herşey enerjiye bağlıdır. Örneğin biz insanlar yaşama için güneşe, otomobiller çalışmak için benzine, makinalar çalışmak için elektriğe ihtiyaç duyar. İşte bunların hepside birer enerji şeklidir. Peki ama bu yaşamak için muhtaç olduğumuz, adına enerji dediğimiz şey ne olur, ne demektir enerji, kaç çeşit enerji vardır? İşte bu soruların kısaca cevaplarını bulabileceğiniz yazımız;

Herhangi bir hareketi (aksiyonu) yapan yada yapmaya hazır olan kabiliyete Enerji denir. Kısaca “iş yapma yeteneği” olarak da tanımlanabilir.

Enerji Kaça Ayrılır?

Genel olarak enerji ikiye ayrılır.

1.Potansiyel enerji: Depolanan enerjiye denir. Saat zembereği yada pil gibi.

2. Kinetik enerji: Hareket enerjisidir. Rüzgar, akan sular, giden arabanın enerjisi gibi. Bir hareket sonucu açığa çıkan enerjiye denir. Örneğin rüzgar bir pervaneyi kinetik enerjisi nedeni ile çevirir. Bu pervaneye bağlı jeneratör de elektrik üretir. İşte rüzgarın kinetik (hareket) enerjisi elektrik enerjisine dönüşmüştür.

Hidrolik (su) enerjisi: Barajda biriken suyun yüksekten düşerken sahip olduğu kinetik enerji aşağıda bir su tribünün (pervanesi) çevrilmesi ile elektrik enerjisine dönüşür.

Kimyasal enerji: Bir maddenin moleküllerinin başka bir madde molekülleri ile yaptığı reaksiyon sonucu ortaya çıkan enerjiye denilir. Bunun en temel örneği yanan odun, kömür, petrol gibi fosil yakıtlar,kağıt vb. gibi birçok malzemelerdeki molekül ile havadaki oksijen molekülünün birleşerek ortaya çıkardığı ısıl enerjidir. Uzmanlar bunu termik enerji yada ısıl enerji olarak isimlendirmektedir.

Nükleer (çekirdek) enerji: atom çekirdeklerinin bölünmesi veya parçalanması neticesi açığa çıkan enerji olarak tanımlanır. Bu enerji miktarını belli eden Einstain formülü ise E=mc2 dir. Burada “m” kaybolan kütleyi “c” ise ışık hızını ifade eder. 300.000.000 m/sn olan bu değerin karesinin ne denli büyük bir enerjiye karşılık geleceği ortadadır. Dünyada mevcut 443 nükleer santral bu prensip ile çalışır.

Termonükleer (Termal) enerji: Atom çekirdeklerinin birleşmesi neticesi ortaya çıkan bir çekirdek enerjisi olup Termonükleer olarak isimlendirilir. İki Hidrojen atomunun birleşmesi ile ortaya çıkan ve bilimin artık laboratuar da kolayca gerçekleştirdiği bir enerji dalıdır. Kısacası Güneş bu reaksiyon ile ayakta duran dev bir termonükleer enerji merkezidir. İlk FÜZYON yani termonükleer enerji santralin inşasına 10 milyar €-avro bütçe ile Fransa da 10 ülkenin ortaklığı ile haziran 2005 yılında başlanmıştır

Elektrik Enerjisi: Serbest elektronların hareketinden kaynaklanan bir enerjidir. Genelde bakır veya alüminyum tel ile iletilen “alternatif ve doğru” akım modelleri olan bir enerjidir. Elektrik insanlık tarihinde “tekerlekten” sonraki en önemli buluş olarak bilinir.

Elektrik enerji üretim kaynakları nelerdir?

Elektrik enerjisi üretim kaynakları 2 ana başlık altında ifade edilir.

  1. Ana enerji kaynakları.
  2. Yenilenebilir (Alternatif) enerji kaynakları.

Ana enerji kaynakları 3 çeşittir.

  1. Su enerjisine hidrolik,
  2. Kömür,petrol ve gaz enerjisine termik,
  3. Çekirdek enerjisine de nükleer enerji denilmektedir.

Alternatif (yenilenebilir) enerji kaynakları ise çok çeşitlidir.

  • Rüzgar, güneş, jeotermal, biomas, güneş pilleri,vb.

Alternatif enerji kaynakları ana enerji kaynakları yerine ikame edilemez. Çünkü; Ana enerji kaynaklarının en önemli kriterinden birisi olan “sürdürülebilirlik” ilkesini alternatif enerji kaynakları sağlamakta başarısız olmaktadırlar. Bu yüzdendir ki kesintisiz ve hiçbir şarta bağlı olmaksızın elde edilebilen enerji türüne ana enerji kaynakları denilmektedir.